Wavelet-Based Signal approximation with Genetic Algorithms

نویسندگان

  • Marc M. Lankhorst
  • Marten D. van der Laan
چکیده

In this paper, the usability of genetic algorithms for signal approximation is discussed. Due to recent developments in the field of signal approximation by wavelets, this work concentrates on signal approximation by wavelet-like functions. Signals are approximated by a finite linear combination of elementary functions and a genetic algorithm is employed to find the coefficients to such an approximation. The algorithm maintains a population of different approximations, encoded in the form of ‘chromosomes’. From this population ‘parents’ are selected according to their ‘fitness’, and the ‘children’ that constitute the next generation are produced from these parents using mutation and crossover operators. Fitness functions employed to evaluate different approximations are the L1, L2, L4, and L1 norms. Experiments are carried out on several test signals, using Gabor and spline wavelets, both to evaluate the quality of different fitness functions, encoding schemes, and operators, and to assess the usefulness of genetic algorithms in the realm of signal approximation. Although other existing methods are faster while providing comparable approximation quality, the algorithm offers a great deal of flexibility in terms of different elementary functions, fitness criteria, etc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)

Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...

متن کامل

A Novel Methodology for Structural Matrix Identification using Wavelet Transform Optimized by Genetic Algorithm

With the development of the technology and increase of human dependency on structures, healthy structures play an important role in people lives and communications. Hence, structural health monitoring has been attracted strongly in recent decades. Improvement of measuring instruments made signal processing as a powerful tool in structural heath monitoring. Wavelet transform invention causes a g...

متن کامل

High impedance fault detection: Discrete wavelet transform and fuzzy function approximation

This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995